Ouantum Mechanical ab Initio Studies of the Structures and Stabilities of Halogen Azides XN₃ (X = F, Cl, Br, I)

M. Otto, S. D. Lotz,[†] and G. Frenking^{*}

Fachbereich Chemie, Philipps-Universität Marburg, Hans-Meerwein-Strasse, D-3550 Marburg, Germany

Received January 9, 1992

We report theoretically predicted geometries, heats of formation, $X-N_3$ bond energies, and vibrational spectra of the halogen azides XN_3 (X = F, Cl, Br, I) and HN_3 calculated by quantum chemical methods at the Hartree-Fock and correlated levels using all-electron wave functions and effective-core potentials. The theoretical data are used to predict the geometries of BrN₃ and IN₃, which have experimentally not been measured yet. A trans-bent (C_i) geometry is calculated for the halogen azides with a nearly constant bond angle of $\sim 172^{\circ}$ for the N₃ unit. The XNN angle increases from $\sim 103^{\circ}$ for FN₃ to $\sim 111^{\circ}$ for IN₃. A partial reassignment of the experimental vibrational spectra of BrN₃ and IN₃ is suggested. The calculated X-N₃ bond strengths indicate the order $H \gg F > Cl > Br$ > I; i.e., FN_3 is predicted to have the strongest X-N bond among the halogen azides. The opposite stability order F < Cl < Br < I is calculated for the XN-N₂ bond of XN₃; i.e., the dissociation of XN₃ into XN ($^{3}\Sigma^{-}$) + N₂ is most exothermic for FN_3 but endothermic for IN_3 . The theoretical results for the heat of formation and the $H-N_3$ and $HN-N_2$ dissociation energies are in excellent agreement with experimental results. The electronic structure of the halogen azides is analyzed with the help of the topological analysis of the wave function. The X-N bond is essentially a single bond with a polarity $X^{\delta}-N^{\delta+}$ for FN₃ and $X^{\delta+}-N^{\delta-}$ for ClN₃, BrN₃, and IN₃. The covalent bond order index P_{AB} indicates that the N₁-N₂ bond in XN₃ is intermediate between a single and a double bond and that the N_2-N_3 bond has nearly a triple bond. The partial charge is always slightly negative at N_2 and slightly positive at N₃.

Introduction

Although halogen azides XN_3 (X = F, Cl, Br, I) have been known since the beginning of this century¹ and have been recognized as versatile compounds in synthetic chemistry, the study and usage of them has been hampered by their unpleasant tendency to explode violently. Dehnicke and co-workers²⁻⁴ developed experimental techniques which allow the preparation of very pure IN₃, BrN₃, and ClN₃, but knowledge about the structures and reactivities of halogen azides is still very scarce.

The most explosive member of this class of compounds is probably fluorine azide, FN₃. Only very recently have the results of a complete structural and spectroscopic investigation of FN₃ been reported by Christen et al.⁵ These authors presented besides their microwave and infrared spectra also the results of ab initio calculations on FN₃ at the Hartree-Fock and correlated level of theory.⁵ Parallel to their work, theoretical studies of FN₃ were published by Peters et al.⁶ Prior to these studies, only some theoretical calculations of structural parameters⁷ and argonmatrix IR frequencies of few of the fundamental vibrations⁸ were known.

For the next highest member of this family, ClN₃, the experimentally determined UV,9 microwave,10 and vibrational11

- (1) IN3: Hantzsch, A.; Schümann, M. Ber. Dtsch. Chem. Ges. 1900, 33, 522. BrN3: Spencer, D. A. J. Chem. Soc. 1925, 127, 217. ClN3: Raschig, F. Ber. Dtsch. Chem. Ges. 1908, 41, 4194.
- (2) (a) Dehnicke, K. Angew. Chem. 1976, 88, 612; Angew. Chem., Int. Ed. [a] Lagi. 1976, 15, 553. (b) Dehnicke, K. Angew. Chem. 1979, 91, 527;
 Angew. Chem., Int. Ed. Engl. 1979, 18, 500.
- Dehnicke, K.; Ruschke, P. Cited in ref 9.
- (4) Dehnicke, K. J. Inorg. Nucl. Chem. 1965, 27, 809.
 (5) Christen, D.; Mack, H. G.; Schatte, G.; Willner, H. J. Am. Chem. Soc. 1988. 110. 707
- Peters, N. J. S.; Allen, L. C.; Firestone, R. A. Inorg. Chem. 1988, 27, (6) 755.
- Clidewell, Ch.; Holden, H. D. J. Mol. Struct. 1982, 90, 131.

- (a) Milligan, D. E.; Jacox, M. E. J. Chem. Phys. 1964, 40, 2461.
 (b) Dehnicke, K.; Ruschke, P. Z. Naturforsch. 1978, 33b, 750.
 (10) Cook, R. L.; Gerry, M. C. L. J. Chem. Phys. 1970, 53, 2525.
 (11) Kollitsch, W. Ph.D. Thesis, Universität Marburg, 1974.

spectra are available. Quantum mechanical calculations of ClN3 at the Hartree-Fock level have been published by several groups.¹² The UV spectra⁹ and vibrational frequencies^{8,13} are reported for BrN₃ and IN₃, but the geometries of the two molecules are not known. No theoretical studies of BrN₃ and IN₃ are known to us.

In this paper we report the results of the first quantum mechanical study of all halogen azides XN_3 (X = F, Cl, Br, I). We have calculated the equilibrium geometries and vibrational spectra of the four molecules. For comparative reasons, we also present results for HN₃, for which experimental^{14,15} and theoretical data^{16,17} are available. We estimate theoretically the $X-N_3$ bond strength relative to $H-N_3$, and we discuss the thermodynamic stabilities of the calculated azides. The theoretical studies were performed at the Hartree-Fock and correlated level of theory, using Møller-Plesset perturbation theory to estimate the correlation energy. All-electron basis sets of different sizes as well as effective-core potentials (ECP) were employed, and the results

- (13) Engelhardt, U.; Feuerhahn, M.; Minkwitz, R. Z. Anorg. Allg. Chem. 1978, 440, 210.
- (14) (a) Winnewisser, B. P. J. Mol. Spectrosc. 1980, 82, 220. (b) Moore, C. B.; Rosengreen, K. J. J. Chem. Phys. 1964, 40, 2461. (c) Foy, B. R.; Casassa, M. P.; Stephenson, J. C.; King, D. S. J. Chem. Phys. 1988, 89, 608. (d) Kajimoto, O.; Yamamoto, T.; Fueno, T. J. Phys. Chem. 1979, 83, 429. (e) Richardson, W. C.; Setser, D. W. Can. J. Chem. 1969. 47. 2725.
- (15) Milligan, D. E.; Jacox, M. E. J. Chem. Phys. 1964, 41, 2839.
- (a) Alexander, M. H.; Werner, H.-J.; Dagdigian, P. J. J. Chem. Phys. (16)1988, 89, 1388. (b) Nielsen, C. J.; Sjøgren, C. E. THEOCHEM 1987, 150, 361. (c) Sjøgren, C. E.; Nielsen, C. J. J. Molec. Struct. 1986, 142, 285
- (17) (a) Lievin, J.; Breulet, J.; Verhaegen, G. Theoret. Chim. Acta 1981, 60, 339. (b) Breulet, J.; Lievin, J. Theoret. Chim. Acta 1982, 61, 59. (c) (b) Breulet, J.; Llevin, J. Ineoret. Chim. Acta 1970, 01, 57. (c)
 Lievin, J.; Breulet, J.; Verhaegen, G. Theoret. Chim. Acta 1979, 52, 75.
 (d) Kahn, S. D.; Hehre, W. J.; Pople, J. A. J. Am. Chem. Soc. 1987,
 (109, 1871. (e) Sana, M.; Leroy, G.; Nguyen, M.-T.; Elguero, J. Nouv.
 J. Chim. 1979, 3, 607. (f) Murgich, J.; Aray, Y. J. Chem. Phys. 1987, 87, 3580. (g) Dewar, M. J. S.; Storch, D. M. J. Am. Chem. Soc. 1985, 107, 3898. (h) Ibrahim, M. R.; Schleyer, P. v. R. J. Comput. Chem. 1985, 6, 157. (i) Levin, A.; Leroux, J. P.; Bigot, B.; Devaquet, A. Chem. Phys. Lett. 1980, 45, 305.

[†] Present address: Institut für Anorganisch und Analytische Chemie, Freie Universität Berlin, D-1000 Berlin 33, Germany.

⁽a) Destro, R.; Merati, F.; Ortoleva, E. Chem. Phys. Lett. 1988, 145, (12)193. (b) Klaeboe, P.; Nielsen, C. J.; Priebe, H.; Schei, S. H.; Sjøgren, C. E. J. Mol. Struct. 1986, 141, 161. (c) Langhoff, S. R.; Jaffe, R. L.; Chong, D. P. Int. J. Quantum Chem. 1983, 23, 875.

of the different procedures are compared with each other. Thus, our study may be used to judge the quality of the ECP approach relative to all-electron basis sets. Details of the theoretical methods are described below.

The electronic structures of the geometry-optimized molecules are analyzed using the topological theory of atoms in molecules.¹⁸⁻²¹ Very recently, a partitioning scheme has been suggested which defines covalent bond orders in the framework of the topological theory of atoms in molecules.²²

Theoretical Details

The calculations have been performed using the program packages Gaussian 9023 and CADPAC.24 The following basis sets have been employed for the all-electron calculations. For HN₃, FN₃, and ClN₃, we used the standard 3-21G(d,p)²⁵ and 6-31G(d,p)²⁶ basis sets with six d-functions for the heavy atoms and three p-functions for H. Note that the 3-21G-(d,p) basis sets has the same exponents for the p- and d-polarization functions as 6-31G(d,p). In case of BrN3 and IN3, we used for Br and I the basis sets suggested by Huzinaga,²⁷ which are split for Br (43321|4321|41) and for I (433321|43321|431). These basis sets, which are intermediate in quality between 3-21G and 6-31G, have been augmented by a set of six d-functions. They are denoted HUZ(d). The exponents for the polarization functions are H (1.1), N (0.8), F (0.8), Cl (0.514), Br (0.389), I (0.266). Open-shell molecules are treated with the unrestricted Hartree-Fock (UHF) method. We also performed allelectron calculations for the halogen azides including correlation energy using Møller-Plesset perturbation theory terminated at second order.²⁸ The optimizations and frequency calculations have been carried out at MP2/6-31G(d,p), with the Huzinaga basis sets for Br and I.

We also carried out ECP calculations utilizing the parameters developed by Hay and Wadt,²⁹ which are implemented in Gaussian 90 and termed LANL1DZ. The LANL1DZ model uses all-electron wave functions for hydrogen and first-row elements and ECPs for heavier atoms, in our case Cl, Br, and I. The basis functions for the valence s and p electrons consist of the standard double- ζ basis set as developed by Huzinaga^{30a,b} and Dunning.^{30c,d} As a next step, we added a set of five d-type polarization functions (three p-functions at H). This level of theory is denoted as LANL1DZ+P. We also optimized the structures and calculated the vibrational spectra using ECPs with inclusion of correlation energy at the MP2/LANL1DZ+P level.

For the calculation of the open-shell molecules the spin-unrestricted (UHF) method was used. In order to give more reliable estimates of the

- (18) Bader, R. F. W. Atoms in Molecules. A Quantum Theory; Oxford
- (10) Bader, R. F. W. Atoms in Molecules. A Quantum Theory; Oxford Press: Oxford, England. 1990.
 (19) (a) Bader, R. F. W.; Tal, Y.; Anderson, S. G.; Nguyen-Dang, T. T. Isr. J. Chem. 1980, 19, 8. (b) Bader, R. F. W.; Nguyen-Dang, T. T.; Tal, Y. Rep. Prog. Phys. 1981, 44, 893. (c) Bader, R. F. W.; Nguyen-Dang, T. T. Adv. Quantum Chem. 1981, 14, 63.
 (20) (a) Bader, R. F. W.; Slee, T. S.; Cremer, D.; Kraka, E. J. Am. Chem. Sca. 1983, 1985, (b) Pader, P. F. W. MonDoursell, P. J. J. Am.
- Coc. 1983, 105, 5061. (b) Bader, R. F. W.; MacDougall, P. J. J. Am. Chem. Soc. 1985, 107, 6788.
- Cremer, D.; Kraka, E. Angew. Chem. 1984, 96, 612; Angew. Chem., Int. (21)Ed. Engl. 1984, 23, 627
- (22) Cioslowski, J.; Mixon, S. T. J. Am. Chem. Soc. 1991, 113, 4142.
- (23) Gaussian 90: Frisch, M. J.; Head-Gordon, M.; G. W. Trucks, G. W.; Foreman, J. B.; Schlegel, H. B.; Raghavachari, K.; Robb, M. A.; Binkley, J. S.; Gonzalez, C.; DeFrees, D. J.; Fox, D. J.; Whiteside, R. A.; Seeger, R.; Melius, C. F.; Baker, I.; Martin, R.; Kahn, L. R.; Stewart, J. J. P.; Topiol, S.; Pople, J. A. Gaussian Inc., Pittsburgh, PA 1990. (24) Amos, R. D.; Rice, J. E.: CADPAC: The Cambridge Analytical
- (2) Anto, K. D., Alex, J. E. CADrack, The Cambridge Analytical Derivatives Package, issue 4.0. Cambridge, 1987.
 (25) (a) Binkley, J. S.; Pople, J. A.; Hehre, W. J. J. Am. Chem. Soc. 1980, 102, 939. (b) Gordon, M. S.; Binkley, J. S.; Pople, J. A.; Pietro, W. J.; Hehre, W. J. J. Am. Chem. Soc. 1982, 104, 2797. (c) Pietro, W. J.; Franci, M. M.; Hehre, W. J.; DeFrees, D. J.; Pople, J. A.; Binkley, J. S. J. Am. Chem. Soc. 1982, 104, 5039.
- (a) Ditchfield, R.; Hehre, W. J.; Pople, J. A. J. Chem. Phys. 1971, 54, 724. (b) Hehre, W. J.; Lathan, W. A. J. Chem. Phys. 1972, 56, 5255.
- Andzelm, J.; Huzinaga, S.; Klobukowski, M.; Radzio, E.; Sakai, Y.; Tatekawi, H. Gaussian Basis Sets for Molecular Calculations; Elsevier: Amsterdam, 1984.

- Amsteroam, 1984.
 (28) (a) Møller, C.; Plesset, M. S. Phys. Rev. 1934, 46, 618. (b) Binkley, J. S.; Pople, J. A. Int. J. Quantum Chem. 1975, 9, 229.
 (29) Hay, P. J.; Wadt, W. R. J. Chem. Phys. 1985, 82, 270, 284, 299.
 (30) (a) Huzinaga, S. J. Chem. Phys. 1965, 42, 1293. (b) Huzinaga S.; Saki, Y. J. Chem. Phys. 1969, 50, 1371. (b) Dunning, T. H. J. Chem. Phys. 1970, 53, 2823. (d) Dunning, T. H.; Hay, P. J. In Modern Theoretical Chemistry: Schaefer. H. E. Ed. Plenum Press. Navy York 1977. Vol. Chemistry; Schaefer, H. F., Ed.; Plenum Press: New York, 1977; Vol. 3, Chapter 1.

Figure 1. Schematic representation of the geometry of XN₃ molecules.

reaction energies involving open-shell species, techniques of spinprojection³¹ were used which eliminate some (but not all) contributions from higher spin states. We present the calculated eigenvalues $\langle S^2 \rangle$ of the S^2 operator and the energies of the spin-projected wave functions at the MP2 level, i.e. PMP2/6-31G(d,p) and PMP2/LANL1DZ+P.

The analysis of the electron density distribution and the calculation of $\nabla \rho(\mathbf{r})$ and $\nabla^2 \rho(\mathbf{r})$ was carried out using the programs PROAIM and SADDLE.³² The covalent bond orders have been computed using the program BONDER.33

Results and Discussion

1. Geometries. The experimentally determined geometries of HN_{3} ,^{14a} FN_{3} ,⁵ and ClN_{3} ¹⁰ exhibit a trans-bent (C_{s}) structure with only a slight deviation of the N_3 unit from linearity (Figure 1).

Table I shows the calculated geometries at various levels of theory and the experimentally observed bond lengths and bond angles, as far as they are available. The results obtained by the all-electron calculations are very similar to the geometries using ECP wave functions at a comparable level of theory. That is, the HF/6-31G(d,p) geometries are not very different from the HF/ LANL1DZ+P structures, and the same holds true for geometries predicted at MP2/6-31G(d,p) and MP2/LANL1DZ+P (Table I). This is particularly noteworthy for the I-N bond length, since the ECPs have been developed with inclusion of relativistic effects, while the all-electron calculations reported here do not include relativistic terms. The addition of polarization functions to the LANL1DZ basis set yields significant changes in the calculated geometries, while the HF/3-21G(d) and HF/6-31G-(d,p) optimized structures show less alterations. The interatomic distances become larger at the correlated level, but the bond angles change only slightly.

All calculated XN₃ molecules are predicted by theory with a trans-bent geometry. The N_3 unit is calculated at the correlated level with a bond angle α of about 172°, independent of the nature of X. The XNN angle β increases regularly from ~103° for FN₃ to $\sim 111^{\circ}$ for IN₃ (Table I) following the trend predicted by Bent's rule, which states that substitutents with higher electronegativity change the hybridization towards more p-character, thus yielding smaller bond angles. The agreement between theoretically predicted and experimentally observed bond lengths based on the MP2 results is good for the X-N distances but less satisfactory for the N_1-N_2 and N_2-N_3 bond lengths. It should be noted that a high theoretical level is necessary for a good description of bonds between electronegative atoms; a particular difficult molecule is F_2O_2 .³⁴ The theoretical results shown in Table I let us predict that BrN3 and IN3 have trans-bent geometries with slightly larger values for the angle β than found for ClN₃ and the same value for α . The X-N distance should be close to 1.92 Å for Br-N₃ and 2.11 Å for I-N₃.

2. Vibrational Spectra. The theoretically predicted vibrational frequencies for XN₃ molecules have been calculated with the harmonic approximation. The deviation from the experimentally obtained frequencies may partly be compensated by using scaling

- (33) BONDER: Closlowski, J. Florida State University, 1991.
 (34) Rohlfing, C. M.; Hay, P. J. J. Chem. Phys. 1987, 86, 4518.

^{(31) (}a) Sosa, C.; Schlegel, H. B. Int. J. Quantum Chem. 1986, 29, 1001. (b) Schlegel, H. B. J. Chem. Phys. 1986, 84, 4530.

Biegler-König, F. W.; Bader, R. F. W.; Ting-Hua, T. J. Comput. Chem. (32)1982, 3, 317.

Table I. Optimized and Experimentally Observed Geometries with Distances in Å, Angles in deg, and Calculated Total Energies in Hartrees

	HF/3-21G(d,p) ^b	HF/6-31G(d,p)b	MP2/6-31G(d,p) ^b	HF/LANL1DZ	HF/LANL1DZ+P	MP2/LANL1DZ+P	exptle
			F	IN ₁			
$r(H-N_1)$	1.015	1.006	1.018	1.012	1.006	1.023	1.015
$r(N_1 - N_2)$	1.238	1.238	1.250	1.273	1.247	1.266	1.243
$r(N_2 - N_3)$	1.098	1.099	1.158	1.121	1.102	1.171	1.134
α	173.9	173.8	171.2	171.4	174.3	171.5	171.3
ß	107.4	108.2	109.7	110.9	107.8	109.0	108.8
E _{tot.}	-163.0574	-163.8429	-164.3614	-163.7564	-163.8707	-164.3699	
			F	N ₃			
$r(F-N_1)$	1.381	1.382	1.431	1.450	1.383	1.441	1.444
$r(N_1 - N_2)$	1.258	1.253	1.280	1.314	1.263	1.293	1.253
$r(N_2 - N_2)$	1.098	1.110	1.152	1.115	1.103	1.161	1.132
a	173.8	174.0	171.7	175.3	174.7	172.4	170.9
8	104.2	104.3	103.8	102.7	104.2	103.3	103.8
$\tilde{E}_{tot.}$	-261.3451	-262.6025	-263.2824	-262.5335	-262.6606	-263.3103	
			C	IN ₂			
$r(CI-N_{1})$	1 741	1 734	1.753	1.863	1.742	1.767	1.745
$r(N_1-N_2)$	1.252	1.247	1.265	1.300	1.257	1.278	1.252
$r(N_2 - N_2)$	1.096	1.098	1.157	1.117	1.102	1.167	1.133
α	173.6	174.1	171.3	173.6	174.7	171.7	171.9
ß	108.5	109.0	109.3	107.8	108.3	108.1	108.6
$\tilde{E}_{tot.}$	-619.8430	-622.6894	-623.3416	-177.8222	-177.9528	-178.5733	
			в	rNı			
$r(Br-N_1)$	1.908	1.896	1.923	1.992	1.891	1.919	
$r(N_1-N_2)$	1.248	1.244	1.262	1.287	1.251	1.274	
$r(N_2 - N_2)$	1.096	1.098	1.160	1.120	1.103	1.170	
α	174.0	174.2	171.4	173.3	174.8	171.9	
ß	108.1	109.1	108.5	110.6	109.8	109.4	
$\tilde{E}_{tot.}$	-2732.5896	-2733.6089	-2734.0035	-174.0580	-176.1829	-176.7946	
			I	N ₁			
$r(I-N_1)$	2.112	2.090	2.120	2.120	2.058	2.095	
$r(N_1 - N_2)$	1.292	1.238	1.255	1.274	1.245	1.268	
$r(N_2 - N_2)$	1.102	1.099	1.165	1.124	1.104	1.175	
α	172.4	174.4	171.6	173.1	174.8	171.8	
8	109.5	111.4	110.4	114.5	112.3	111.2	
E tot.	-7075.3544	-7076.2957	-7076.9339	-174.3006	-174.4187	-175.0188	

^a Exptl data: HN₃, ref 14a; FN₃, ref 5; ClN₃, ref 10. ^b HUZ(d) for Br and I.

factors which change at different theoretical levels.³⁵ They may also be different for the various vibrational modes which are present in the molecule. The calculated frequencies are usually too high, but sometimes they may be smaller than the experimental values.³⁵ But it should also be noted that the experimentally observed frequencies may change substantially when measured under different conditions. Table II shows our calculated vibrational frequencies, IR intensities, and Raman activities in comparison with the experimental results.

For all four halogen azides, the highest normal mode frequency ν_1 corresponds to the N₃ asymmetric stretching mode, which is rather independent of the nature of X. The experimental frequencies ν_1 for the halogen azides are between 2037 and 2075 cm⁻¹ (Table II). The MP2 frequencies are uniformly too high by a factor of ~1.15. The calculations predict that ν_1 should have the highest intensity in the IR spectra, which is in agreement with experimental results (Table II).

The next highest lying frequency ν_2 corresponds to the symmetric N₃ stretching mode which increases from 1090 cm⁻¹ (FN₃) to 1240 cm⁻¹ (IN₃). ν_2 is a case where the experimental value is strongly dependent on the experimental conditions. For IN₃, ν_2 is reported as 1240 cm⁻¹ when it is measured in Nujol but at 1176 cm⁻¹ when it is measured in benzene.^{2a} The computed frequencies for ν_2 of XN₃ are too high by an average factor of 1.03 (MP2 level), but otherwise they agree quite well with the experimental data.

As expected, the vibrational frequency for the X-N stretching mode decreases from F to I (Table II). For FN₃, ClN₃, and BrN₃, the MP2 frequencies are too high by a factor of ~ 1.05 . The same factor is found when the MP2 values for the I–N stretching mode (426 and 429 cm⁻¹) are compared with the experimental values reported by Engelhardt et al.¹³ (400 and 410 cm⁻¹). A much lower I–N frequency (338 cm⁻¹) has been reported by Dehnicke,^{2a} who noted the unusually low value. Engelhardt et al.¹³ found also a band at 338 cm⁻¹ in the Raman spectrum, but they attributed the signal to solid iodine acid. Our calculated data support the assignment of Engelhardt et al.¹³ for the I–N stretching mode in IN₃ at 400–410 cm⁻¹.

The only other normal mode which is reported for all halogen azids is the deformation mode $\delta(N_3)$ which increases from 241 cm^{-1} for FN₃ to 578-648 cm^{-1} for IN₃ (Table II). Our theoretically predicted data suggest that the assignments of the experimentally observed vibrational modes may not always be correct. The MP2 frequencies for the $\delta(N_3)$ mode of FN₃ and ClN₃ are too high by a factor of ~ 1.04 (Table II). The same factor is calculated for IN₃ if the experimental value of Dehnicke^{2a} (648 cm⁻¹) is used. Engelhardt et al.¹³ report much lower values of 583 and 595 cm⁻¹. However, these authors noted already uncertanties concerning the assignments of the $\delta(N_3)$ and $\gamma(N_3)$ mode. The calculated values suggest that the assignments of the vibrational frequencies for the $\delta(N_3)$ and $\gamma(N_3)$ modes of IN₃ reported by Engelhardt et al.¹³ should be reversed; i.e., the values of 583 (Raman) and 595 cm⁻¹ (IR) correspond to the $\gamma(N_3)$ mode and the frequencies found at 623 and 628 cm⁻¹ correspond to the $\delta(N_3)$ mode. As shown below, this is also in better agreement with our calculated values for the $\gamma(N_3)$ mode of XN₃ molecules. We also question the assignment for the frequency at 530 cm⁻¹ to the $\delta(N_3)$ mode of BrN₃ by Milligan and Jacox.⁸ With application of the same scaling factor of 1.04, the $\delta(N_3)$ mode should appear at ~ 465 cm⁻¹. The experimentally observed

⁽³⁵⁾ Hehre, W. J.; Radom, L.; Schleyer, P. v. R.; Pople, J. A. Ab Initio Molecular Orbital Theory; Wiley: New York, 1986; p 236 f.

Table II. Calculated Vibrational Frequencies (cm⁻¹), IR Intensities (km/mol), and Raman Intensities (Å⁴/amu) and Experimentally Observed Frequencies

			HN3					
	HF/6-31G(d,p)) MP2/6-31G(d,	p) HF/LANL1D2	C+P MP2/LANL1	DZ+P	exptl IR ^a	assgnt	
ν1 (A')	3732	3585	3681	3573		3324	ν (H–N)	
IR intensity	34	62	29	68		m		
	125	2201	2209	2250		21.60		
ν2 (A') IR intensity	555	198	2298	2350		2150	$\nu(N_3, asym)$	
Raman intensity	52	nc	nc	nc		15		
ν3 (A')	1436	1267	1422	1237		1273	$\delta(N_1)$	
IR intensity	46	1	76	3		m		
Raman intensity	13	nc	nc	nc				
ν4 (A')	1253	1130	1055	1135		1168	$\nu(N_3, sym)$	
IR intensity	271	209	296	190		vs		
Raman Intensity	4	nc	nc	nc				
ν5 (A') IR intensity	574	551	506	541		527	$\delta(HNN)$	
Raman intensity	1	nc	nc	nc		*		
u6 (A ^{//})	677	579	584	550		588	$\gamma(\mathbf{N}_{\mathbf{r}})$	
IR intensity	5	1	1	1		w	/(13)	
Raman intensity	<1	nc	nc	nc				
			FN3					
	HF/6-31G(d,p)	MP2/6-31G(d,	p) HF/LANL1DZ	C+P MP2/LANL1	DZ+P	exptl IR ^b	assgnt	
ν1 (A')	2386	2405	2354	2384	·	2037	$\nu(N_1, asym)$	
IR intensity	395	141	409	155		vs		
Raman intensity	66	nc	nc	nc				
ν2 (A')	1225	1151	1266	1135		1090	$\nu(N_3, sym)$	
IR intensity	28	2	30	2		m		
	1045		1000		020			
v3 (A') IP intensity	1045	948 42	1029	928	920 51		ν(FN)	
Raman intensity	10	nc	nc nc nc			3		
"4 (A')	758	690	748	673		658	δ(FNN)	
IR intensity	6	4	6	5		m	0(1111)	
Raman intensity	3	nc	nc	nc				
ν5 (A')	282	247	283	245		241	δ(N ₃)	
IR intensity	5	5	5	5		m		
Raman intensity	4	nc	nc	nc				
ν6 (A'') IR intersity	606	494	599	470		504	$\gamma(N_3)$	
TK Intensity	<1	nc	nc	2 nc		*		
	-		CIN					
- <u></u>	$HE/(21C(d_n))$	$MD2/6.21C(d_{p})$			ountil ID (annti Dat		
	HF/6-310(d,p)	MF2/0-310(d,p)	HF/LANLIDZ+F	MF2/LANLIDZ+F	expti IK.		assgnt	
VI (A') IR intensity	2450 545	2382	2415	2359	2075	2066	$\nu(N_3, asym)$	
Raman intensity	126	nc	nc	nc	15			
ν2 (A')	1237	1202	1202	1173	1140	1134	$\nu(N_3, sym)$	
IR intensity	158	27	165	25	S	w	. (
Raman intensity	9	nc	nc	nc				
ν3 (A')	818	757	816	761	719	719	ν(Cl–N)	
IR intensity Raman intensity	41	11	45	8	m	m		
	27	574	11C	670	5 4 5	540	t (N T)	
IR intensity	020 17	5/4	8	570	545 W	540	0(183)	
Raman intensity	1	nc	nc	nc		•		
ν5 (A')	248	212	246	209	223	221	δ(CINN)	
IR intensity	2	3	2	3	vw	s		
Kaman intensity	7	nc	nc	nc				
ν6 (A")	617	511	616	484	522	no ^h	$\gamma(N_3)$	
R intensity Raman intensity	24	4 nc	11 nc	2 nc	w			
			D-NI					
	HE/6.21C(d -)/	MP2/6-21C/d -			7+P	evoti IDd	assant	
	2461	2249	2419	TE MEZ/LANLIL		expu IK"	u(N accord	
IR intensity	615	2348 342	2418 657	2330		2033, 2020	v(13, asym)	
Raman intensity	162	nc	nc	nc				

Table II. (Continued)

	BrN ₃								
	HF/6-31G(d,p) ⁱ	MP2/6-31G(d,p) ⁱ	HF/LANL1DZ+P	MP2/LANL1DZ+P	exptl IR ^d	assgnt			
ν2 (A') IR intensity Raman intensity	1247 212 14	1208 34 nc	1228 232 nc	1190 37 nc	1160	ν(N ₃ , sym)			
v3 (A') IR intensity Raman intensity	774 22 27	712 5 nc	769 23 nc	708 4 nc	687	v(Br–N)			
ν4 (A') IR intensity Raman intensity	520 4 39	478 1 nc	520 3 nc	493 2 nc	530e	δ(N ₃)			
v5 (A') IR intensity Raman intensity	216 1 8	182 2 nc	213 <1 nc	178 2 nc	no ^h	δ(BrNN)			
ν6 (A'') IR intensity Raman intensity	635 16 1	517 4 nc	627 11 nc	480 <1 nc	no ^h	γ(N ₃)			

 IN_3

	HF/6-31G(d,p) ⁱ	MP2/6-31G(d,p) ⁱ	HF/LANL1DZ+P	MP2/LANL1DZ+P	exptl IR ^e	exptl IR ^f	exptl Ra	assignt
v1 (A') IR intensity Raman intensity	2457 770 200	2307 460 nc	2423 814 nc	2291 483 nc	2045, 2058 vs	2050 vs	2052 m	$\nu(N_3, asym)$
v2 (A') IR intensity Raman intensity	2181 286 20	1228 44 nc	1267 306 nc	1209 46 nc	1240, 1176 m	1222 m	1207 w	ν(N ₃ , sym)
v3 (A') IR intensity Raman intensity	747 16 32	679 4 nc	743 16 nc	676 4 nc	648 vw	5958 W	5838 W	δ(N ₃)
v4 (A') IR intensity Raman intensity	472 <1 60	429 <1 nc	471 <1 nc	426 <1 nc	338 m	400 w	410 vs	ν(I–N)
v5 (A') IR intensity Raman intensity	197 1 10	164 2 nc	194 1 nc	161 2	no ^h	no ^h	218 w	δ(INN)
ν6 (A'') IR intensity Raman intensity	649 16 2	524 3 nc	640 11 nc	500 2 nc	580, 578 w	6238 vw	628 <i>8</i> vw	$\gamma(N_3)$

^a Reference 14b. ^b Reference 5. ^c Reference 11. ^d Reference 8. ^e Assignment probably wrong; see text. ^f Reference 13. ^g Assignment probably wrong; see text. ^h Not observed. ⁱ HUZ(d) for Br and I.

frequency at 530 cm⁻¹ fits much better with our calculated value for the $\gamma(N_3)$ mode (see below). The frequency for the $\delta(XNN)$ deformation mode is very low, with the exception of FN₃, and the calculated values at the MP2 level are in most cases smaller than the experimental values (Table II).

The calculated frequency for the out-of-plane vibration $\gamma(N_3)$ at the MP2 level is always too low by ~0.9–0.95 (Table II). The experimentally observed vibrational frequencies at 583 and 595 cm⁻¹ for IN₃¹³ and at 530 cm⁻¹ for BrN₃⁸ are therefore assigned by us to $\gamma(N_3)$ and not to $\delta(N_3)$ as originally suggested.^{8,13}

3. Bond Strengths and Thermodynamic Stabilities of XN_3 . The calculated total energies can be used to predict theoretically the binding energies and thermodynamic stabilities of the azides, which are difficult to determine experimentally. Of particular interest is the strength of the X-N₃ bond. We calculated the dissociation energies of reaction 1, which, after correction for

$$XN_3 \rightarrow N_3 + X + D_0 \tag{1}$$

zero-point energies ZPE (scaled by 0.92^{35}), differences in rotational and translational degrees of freedom (0.6 kcal/mol), and the work term (0.6 kcal/mol), are converted into dissociation enthalpies at room temperature D_0 . The results are shown in Table III. The total energies and ZPE values for the fragments are given in Table IV.

Reaction 1 is predicted to be strongly exothermic, and the results are not very different between the ECP and the all-electron

methods (Table III). The theoretically predicted bond strength for the H–N₃ bond is in very good agreement with the most recent experimental result by Illenberger et al.^{36a} Because the spin contamination in the UHF wave function of N₃ is rather high ($\langle S^2 \rangle = 0.904$ at MP2/6-31G(d,p) and 0.919 at MP2/ LANL1DZ+P, theoretical value 0.75), the bond energies calculated at PMP2 are 5–10 kcal/mol smaller than the MP2 values.

The calculations predict that the $X-N_3$ bond strength decreases in the order $H \gg F > Cl > Br > I$. The results that FN_3 has the strongest and IN_3 the weakest halogen-N₃ bond is surprising at first glance, since FN_3 is considered the least stable halogen azide, while IN₃ is the most stable.¹ However, thermal fragmentation of XN_3 is not induced by breaking the $X-N_3$ bond but rather by dissociation into XN and N₂. Since the electronic ground state of XN (X = halogen) is a $({}^{3}\Sigma^{-})$ triplet state, dissociation of XN₃ (X¹A') into XN (X³ Σ^{-}) and N₂ (X¹ Σ^{+}_{g}) is spin-symmetry forbidden. Nevertheless, pyrolysis experiments carried out in the temperature range of 285-470 °C has shown that HN₃ decomposes into N₂ and NH in the ground-state triplet $(X^3\Sigma^-)$ state.^{14e} A recently published theoretical study^{16a} on the energetics of the dissociation reaction HN₃ (X¹A') \rightarrow N₂ (X¹ Σ ⁺_g) + HN $(X^{3}\Sigma^{-})$ at a very high level of theory using CASSCF and MCSCF-CI techniques has shown that singlet-triplet coupling occurs because the HN_3 wave function in the region of the transition

 ^{(36) (}a) Illenberger, E.; Comita, P. B.; Brauman, J. I.; Fenzlaff, H.-P.; Heni, M.; Heinrich, N.; Koch, W.; Frenking, G. Ber. Bunsen-Ges. Phys. Chem. 1985, 89, 1026. (b) Gray, P. Q. Rev. (London) 1963, 17, 441.

	Н	F	Cl	Br	I
	· · · · · · · · · · · · · · · · · · ·	$XN_3 \rightarrow X^* + N$	$N_{3}(1)$		
MP2/6-31G(d,p) ^{a,b}	96.9 (87.4)	57.8 (47.7)	48.5 (38.3)	46.9 (36.8)	45.8 (35.6)
MP2/LANL1DZ+P	99.3 (94.8)	58.0 (52.9)	49.6 (44.3)	46.9 (41.6)	45.4 (40.3)
exptl	$92.2 \pm 4.6^{\circ}$				
•	85 ^d				
		$XN_3 \rightarrow N_2 + XN$	$(^{3}\Sigma^{-})$ (2)		
MP2/6-31G(d,p) ^{a,b}	+14.9 (+13.5)	-25.1 (-27.0)	-11.9 (-14.0)	-3.5 (-6.1)	+6.5 (+2.9)
MP2/LANL1DZ+P	+15.1(+13.7)	-28.8 (-30.7)	-11.2 (-13.5)	-3.3 (-6.1)	+5.7 (+2.0)
exptl	17.5				
•	15.0				
		$2XN_3 \rightarrow 3N_2 +$	$X_{2}(3)$		
MP2/6-31G(d,p) ^a	-144.2	-164.4	-185.6	-193.2	-191.4
MP2/LANL1DZ+P	-137.6	-157.8	-184.4	-184.6	-183.6

^a MP2/HUZ(d) for Br and I. ^b Spin-projected (PMP2) results are given in parentheses. ^c Reference 36a. ^d Reference 36b. ^e Reference 14d. ^f Reference 37.

Table IV. Calculated Total Energies Etot. (Hartrees), Interatomic Distances rAB (Å), and Zero-Point Vibrational Energies ZPE (kcal/mol)

	MP2/6-31G(d,p) ^a					MP2	/LANL1DZ+P			
	E _{tot.}	$\langle s^2 \rangle$	$E_{\text{tot.}}^{b}$	r _{ab}	ZPE	E _{tot.}	$\langle s^2 \rangle$	$E_{tot.}{}^{b}$	r _{ab}	ZPE
$N_2(1\Sigma^+_g)$	-109.2616			1.130	2.9	-109.2638			1.139	2.8
HN $(^{3}\Sigma^{-})$	-55.0707	2.014	-55.0729	1.035	4.5	-55.0769	2.014	-55.0791	1.038	4.5
$FN(^{3}\Sigma^{-})$	-154.0584	2.019	-154.0614	1.329	1.6	-154.0830	2.020	-154.0860	1.342	1.6
$CIN(^{3}\Sigma^{-})$	514.0964	2.025	-514.0997	1.640	1.1	-69.3248	2.030	-69.3284	1.662	1.1
BrN $(^{3}\Sigma^{-})$	-2624.7451	2.041	-2624.7493	1.806	1.0	-67.5336	2.045	-67.5381	1.808	1.0
IN (³ Σ ⁻)	-6967.6598	2.081	-6967.6655	2.005	0.9	-65.7437	2.082	-65.7496	1.981	0.9
$H_2(^1\Sigma^+_{g})$	-1.1577			0.734	6.1	-1.1576			0.733	6.1
$F_2(\Sigma^+_{g})$	-199.0388			1.421	1.3	-199.0775			1.429	6.1
$Cl_2(\Sigma^{+}_{g})$	-919.1912			2.015	0.7	-29.646 1			2.023	0.7
$Br_2(\Sigma^+)$	-5140.5278			2.309	0.5	26.0893			2.328	0.5
$I_2 (\Sigma^+_g)$	-13826.3859			2.716	0.3	-22.5367			2.699	0.5
$N_3(^2\Pi)$	-163.6997	0.904	-163.7149	1.184	5.6	-163.7056	0.919	-163.7128	1.194	5.8
H• (2S)	-0.4982					-0.4976				
$F^{\bullet}(^{2}P)$	-99.4890	0.753	-99.4900			-99.5111	0.753	-99.5121		
$Cl^{\bullet}(^{2}P)$	-459.5621	0.755	-459.5632			-14.7228	0.756	-14.7895		
Br* (² P)	-2570.2285	0.756	-2570.2295			-13.0140	0.757	-13.0152		
I• (² P)	-6913.1609	0.757	-6913.1620			-11.2411	0.757	-11.2421		

^a MP2/HUZ(d) for Br and I. ^b Spin-projected energies.

state can be considered an equal mixture of N₂ (X)·NH ($a^{1}\Delta$) and N₂ (X)·NH ($b^{1}\Sigma^{+}$). The calculated barrier for the dissociation (35.7 kcal/mol) is in excellent agreement with the value $E_{a} \sim 36$ kcal/mol estimated from thermal dissociation studies in a shock tube.¹⁴⁴

This result suggests that the stabilities of XN_3 molecules may be determined by the activation barrier for breaking the $XN-N_2$ bond, which in turn involves singlet-triplet coupling along the reaction course. Because an accurate calculation of the dissociation barrier of XN_3 yielding XN and N_2 needs a very high level of theory which is not possible for larger atoms X at the present time, we calculated only the reaction energy of the corresponding reaction 2. The reaction energies are converted into

$$XN_3 (X^1A') \rightarrow N_2 (X^1\Sigma_g^+) + XN (X^3\Sigma_g^-) + D_0 \quad (2)$$

 D_0 enthalpies at room temperature using the ZPE corrections (Table IV) and corrections for rotational and translational degrees of freedom (1.2 kcal/mol) and the work term pV(0.6 kcal/mol). The theoretically predicted results are shown in Table III.

The calculated reaction energies for reaction 2 show a stability for the halogen azides opposite to that which is predicted for reaction 1; i.e., FN_3 is now least stable and IN_3 is the most stable halogen azide. The theoretical values for the dissociation enthalpy of HN₃ (14.9 and 15.1 kcal/mol at MP2, 13.5 and 13.7 kcal/mol at PMP2; Table III) are in very good agreement with the experimental results of 15.0 kcal/mol by Melius³⁷ and 17.5 kcal/mol by Kajimoto et al.¹⁴⁴ The PMP2 results are not very different from the MP2 values, because the spin contamination in the UHF wave functions of XN $(X^3\Sigma^-)$ is not very high (Table IV).

The dissociation of XN₃ into N₂ and XN via reaction 2 is calculated as exothermic for FN₃, ClN₃, and BrN₃ but endothermic for IN₃ and HN₃. What is the thermodynamic driving force for fragmentation of these compounds? We calculated the reaction energy for dissociation of XN₃ into X₂ and N₂ (reaction 3). After correction for ZPE contributions, rotational and translational degrees of freedom (2.4 kcal/mol), and the work term (1.2 kcal/mol), the reaction enthalpies at room temperature D_0 for reaction 3 have been computed.

$$2XN_3 \rightarrow 3N_2 + X_2 + D_0 \tag{3}$$

Table III shows that reaction 3 is strongly exothermic for all XN_3 molecules. It is interesting to note that the reaction enthalpy of ClN_3 , BrN_3 , and IN_3 in (3) is nearly the same, while the dissociation of FN_3 and HN_3 is less exothermic. This indicates that the higher tendency of FN_3 to explode¹ is due to the weak $FN-N_2$ bond (reaction 2).

The calculated reaction enthalpies for reaction 3 may be used to predict theoretically the heats of formation ΔH_f° at room temperature for the XN₃ molecules. The heats of formation ΔH_f° of N₂, H₂, F₂, and Cl₂ are zero, while $\Delta H_f^{\circ}(Br_2) = 11$ kcal/mol and $\Delta H_f^{\circ}(I_2) = 15.7$ kcal/mol.³⁸ The calculated ΔH_f° values

⁽³⁸⁾ Lias, S. G.; Bartmess, J. E.; Liebman, J. F.; Holmes, J. L.; Levin, R. D.; Mallard, W. G. J. Phys. Chem. Ref. Data 1988, 17, Suppl. 1.

Table V. Theoretical Predicted and Experimentally Observed Heats of Formation ΔH_1° (kcal/mol) for XN₃ Molecules

	HN_3	FN ₃	ClN_3	BrN ₃	IN ₃
MP2/6-31G(d,p) ^a MP2/LANL1DZ+P expt1	72.1 68.8 71.8 ^b 71.7c	82.2 78.9	92.8 92.2	102.1 97.8	103.6 99.7

^a MP2/HUZ(d) for Br and I. ^b Reference 36a. ^c Reference 38.

for XN₃ and the experimental value for HN₃ are shown in Table V. The agreement between the theoretical and experimental data for the heat of formation of HN₃ is very good. The ΔH_f° values of the halogen azides increase in the order FN₃ < ClN₃ < BrN₃ < IN₃.

4. Electronic Structure of XN_3 . The Laplacian distributions for XN_3 molecules at MP2/6-31G(d,p) in the molecular planes are shown in Figure 2. The results of the topological analysis of the wave functions are listed in Table VI.

The Laplacian distribution exhibited in Figure 2 shows regions of electron depletion ($\nabla^2 \rho(\mathbf{r}) > 0$, dashed lines) and electron concentration ($\nabla^2 \rho(\mathbf{r}) < 0$, solid lines). The solid lines connecting the atomic nuclei are the bond paths.¹⁸ The solid lines separating the nuclei indicate the zero-flux surfaces in the molecular plane. The points where the solid lines are crossing between the atoms are the bond critical points r_b .¹⁸ The shift of r_b from the "nonpolar" midpoint of a bond A-B may be used as a measure for the effective electronegativity of the atoms. If A and B are identical, the midpoint is simply the half of the calculated interatomic distance. If A and B are different as in case of the X-N bond in XN₃, the sum of the atomic radii a_N and a_X , corrected by the actual interatomic distance r_{XN} , may be used to define the nonpolar midpoint of the X-N bond. If the latter is given by its distance to the nitrogen atom m_N , we define the nonpolar midpoint $m_{\rm N}$:

$$m_{\rm N} = a_{\rm N} r_{\rm XN} (a_{\rm N} + a_{\rm X})^{-1}$$

 $m_{\rm N}$ = distance of the nonpolar midpoint from atom N

 $a_{\rm N}$ = atomic radius of N in an N-N single bond

 $a_{\rm X}$ = atomic radius of X in an X-X single bond

 $r_{\rm XN}$ = calculated interatomic distance X-N

The shift in the bond critical point Δr_b shown in Table VI is then given by the distance between r_b and m_N for the X-N bond, with positive (negative) values indicating that r_b is shifted towards the nitrogen (X) atom. A negative (positive) Δr_b for the N₁-N₂ (N₂-N₃) bond means that r_b is shifted toward N₂ (N₃).

Visual inspection of the contour line diagrams exhibited in Figure 3 shows characteristic differences among the XN_3 molecules, particularly for the X-N bond. The N-H bond in HN₃ is characterized by a continuous area of charge concentration similar to the N-N bonds. The bond critical point of the H-N bond is shifted by -0.056 Å (Table VI) toward the hydrogen atom relative to the nonpolar midpoint of the N-H bond as defined above. Thus, a larger area of the H-N covalent bond is attributed to the nitrogen atom, which can be expected from the electronegativities of N and H. Integration of the atomic basins yields a negative charge of -0.407 e for N₁ and a positive charge of +0.445e for H (Table VI). A covalent character of the H–N bond is indicated by the large negative value of -0.496 for H_b . The covalent bond order P_{AB}^{22} predicts less than a single bond for H–N. The P_{AB} values suggest also that the N₁–N₂ bond is intermediate between a single and a double bond and that the N₂–N₃ bond is nearly a triple bond.

The Laplacian distribution of FN₃ shows that the F-N bond is topologically very different compared with the H-N bond in HN₃. There is a large area of charge depletion in the F-N interatomic region, and the position of the bond critical point $\mathbf{r}_{\rm b}$ is shifted toward the nitrogen atom by 0.105 Å relative to the nonpolar midpoint (Table VI). This agrees with the higher electronegativity of fluorine than nitrogen. The contour line diagram suggests at first sight that FN_3 might be considered as ionic $F^-N_3^+$. However, integration of the electronic charge over the atomic basins indicates a negative charge of only -0.302 e at fluorine, while N_1 carries a positive charge of +0.245 e. The F-N bond is characterized as covalent by the value of $H_b = -0.209$ (Table VI). It should be pointed out that the Laplacian distribution is *not* a measure for the absolute concentration of electronic charge: it rather reflects the *curvature* of $\rho(r)$ in three dimensions λ_i (*i* = 1-3).¹⁸ The curvature along the bond path λ_1 is always positive, while λ_2 and λ_3 are negative in the two directions perpendicular to the bond path. $\nabla^2 \rho(\mathbf{r})$ is positive if $|\lambda_1| > (|\lambda_2| + |\lambda_3|)$, and it is negative if $|\lambda_1| < (|\lambda_2| + |\lambda_3|)$. Thus, the Laplacian of the electronic charge is a sensitive probe to show the differences in the curvature of the charge distribution of two molecules, but it cannot be used as an absolute measure for the charge concentration. It has been shown that the Laplacian distribution for F_2 in the interatomic region is positive (depletion of charge), although the H_b value indicates a strong covalent bond.^{21,40} The covalent bond order P_{AB} indicates a F-N single bond in FN₃ (Table VI).

Chlorine is less electronegative than nitrogen, and the contour line diagram of $\nabla^2 \rho(\mathbf{r})$ for ClN₃ shows a Cl-N region with a continuous range of charge concentration (Figure 3). The bond critical point \mathbf{r}_b is shifted toward the Cl atom by 0.141 Å relative to the nonpolar midpoint (Table VI). The Cl atom carries a positive charge of +0.118 e, while N₁ has a negative charge of -0.139 e. The Laplacian distribution of the Cl-N bond has a continuous range of charge concentration like HN₃ along the X-N axis, but the value of H_b indicates that the covalency of the Cl-N bond ($H_b = -0.131$) is less than that of the F-N bond (H_b = -0.209; Table VI). On the other hand, the bond order index P_{AB} of 1.101 for the Cl-N bond is slightly larger than for the F-N bond (Table II), which suggests X-N single bonds in both cases. It seems that the value for H_b (the energy density at the bond critical point \mathbf{r}_b) is sensitive to the distance of \mathbf{r}_b from the atomic nuclei. This will become more obvious in the final two examples.

The Laplacian distributions of BrN₃ and IN₃ show large regions of charge depletions around the Br and I nucleuses, respectively. The bond critical point of the X-N bond is shifted toward Br by 0.244 Å in BrN₃ and toward I by 0.324 Å in IN₃ (Table VI). The increase in the polarization is also reflected by the calculated charge distribution, which is +0.210 e (Br) and -0.221 e (N₁) for BrN₃ and +0.353 e (I) and -0.331 e (N₁) for IN₃. The H_b values indicate less covalent contributions for the Br-N bond and particularly for the I-N bond compared with the other X-N bonds. But the bond order indices P_{AB} predict essentially covalent single bonds for Br-N ($P_{AB} = 1.049$) and I-N ($P_{AB} = 0.969$). It should be noted that P_{AB} indices are usually quite sensitive to the bond polarity. For example, the P_{AB} value for N₂ is 3.038, but P_{AB} for CO is only 1.509.²² Thus, the difference in the predicted covalency for the Br-N₃ and I-N₃ bonds between the

⁽³⁹⁾ The following values for the covalent atomic radii have been used (in Å): H, 0.30; N, 0.70; F, 0.64; Cl, 0.99; Br, 1.14; I, 1.33. They are taken from: Pauling, L. The Nature of the Chemical Bond; Cornell University Press: Ithaca, New York, 1960. In case of N and F, the modified values were taken from: Schomaker, V.; Stevenson, D. P. J. Am. Chem. Soc. 1941, 63, 37.

⁽⁴⁰⁾ Another very elegant way of describing the charge concentration in a covalent bond between electronegative atoms has recently been presented by: (a) Schwarz, W. H. E.; Ruedenberg, K.; Mensching, L. J. Am. Chem. Soc. 1989, 111, 6926. (b) Mensching, L.; Von Niessen, W.; Valtazanos, P.; Ruedenberg, K.; Schwarz, W. H. E. J. Am. Chem. Soc. 1989, 111, 6933.

Figure 2. Contour line diagrams of the Laplacian distribution $\nabla^2 \rho(\mathbf{r})$ of HN₃ (a), FN₃ (b), ClN₃ (c), BrN₃ (d), and IN₃ (e). Dashed lines indicate charge depletion ($\nabla^2 \rho(\mathbf{r}) > 0$), and solid lines indicate charge concentration ($\nabla^2 \rho(\mathbf{r}) < 0$). The solid lines connecting the atomic nuclei are the bond paths, and the solid lines separating the atomic nuclei indicate the zero-flux surfaces in the molecular plane.

 P_{AB} and H_b values cannot be attributed to the P_{AB} indices being less sensitive to bond polarity.

While the P_{AB} and H_b indices make different predictions for the covalency of the X-N bond, they agree concerning the trend in the N_1-N_2 and N_2-N_3 bonds (Table VI). The N_1-N_2 bond of FN₃, which was calculated to be the weakest among the XN_3

molecules (reaction 2, Table III), has the smallest P_{AB} and H_b values, and HN_3 has the largest bond indices for the N_1 - N_2 bond. The P_{AB} and H_b values for the N_1-N_2 bond show the same order as the calculated bond strength. The P_{AB} data predict that the $N_1 - N_2$ bond is always intermediate between a single and a double bond, while the N_2-N_3 bond is nearly a triple bond.

Table VI. Results of the Topological Analysis of XN₃ Molecules at MP2/6-31G(d,p) with HUZ(d) for Br and I: Energy Densities at the Bond Critical Point H_b (Hartree/Å³), Charge Density at the Bond Critical Point ρ_b (e/Å³), Distance between the Bond Critical Point and the Nonpolar Midpoint of the Respective Bond Δr_b (Å), Bond Order P_{AB} , and Partial Charges q

				HN_3				
	$H_{(b)}$	ρъ	$\Delta r_{\rm b}$	PAB	<i>q</i> (H)	$q(N_1)$	$q(N_2)$	q(N ₃)
$\overline{H-N_1}$	-0.496	0.329	-0.056	0.706	0.445	-0.407	-0.124	0.085
$N_1 - N_2$	-0.552	0.420	-0.076	1.626				
$N_2 - N_3$	-0.837	0.528	0.068	2.820				
				FN_3				
	$H_{(b)}$	ρъ	$\Delta r_{\rm b}$	P _{AB}	q (F)	$q(N_1)$	$q(N_2)$	$q(N_3)$
F-N ₁	-0.209	0.266	0.105	1.006	-0.302	0.245	-0.098	0.160
$N_1 - N_2$	-0.500	0.403	0.07 1	1.451				
$N_{2}-N_{3}$	-0.853	0.538	0.060	2.816				
				ClN ₃				
	$H_{(b)}$	ρъ	Ճrъ	P _{AB}	q(Cl)	$q(N_1)$	$q(N_2)$	<i>q</i> (N ₃)
Cl-N ₁	-0.131	0.189	-0.141	1.101	0.118	-0.139	-0.113	0.136
$N_1 - N_2$	-0.522	0.412	-0.060	1.502				
$N_{2}-N_{3}$	-0.833	0.529	0.064	2.806				
				BrN ₃				
	$H_{(b)}$	ρъ	$\Delta r_{\rm b}$	P _{AB}	q(Br)	$q(N_1)$	$q(N_2)$	$q(N_3)$
Br-N ₁	-0.071	0.136	-0.244	1.049	0.210	-0.221	-0.117	0.125
$N_1 - N_2$	-0.527	0.415	-0.068	1.519				
N ₂ N ₃	-0.820	0.525	0.064	2.800				
				IN_3				
	$H_{(b)}$	ρь	Δr_{b}	PAB	<i>q</i> (I)	$q(N_1)$	$q(N_2)$	q(N ₃)
I-N ₁	-0.038	0.099	-0.324	0.969	0.353	-0.331	-0.128	0.104
$N_1 - N_2$	-0.536	0.420	-0.066	1.560				
$N_2 - N_3$	-0.803	0.519	0.064	2.800				

Thus, the electronic structure of the XN₃ molecules given by the topological analysis of the electronic wave functions is as following: The X-N bond is essentially a single bond with a polarity $X^{b-}-N^{b+}$ for FN₃ and $X^{b+}-N^{b-}$ for HN₃, ClN₃, BrN₃, and IN₃. The N₁-N₂ bond has a covalent bond order which is intermediate between a single and a double bond. The bond order indices P_{AB} and H_b for the N₁-N₂ bond decrease with the same sequence as the calculated bond strength. The N₂-N₃ bond has nearly a triple bond as indicated by the P_{AB} values. The partial charge is always slightly negative at N_2 and slightly positive at N_3 .

5. Summary. The halogen azides XN_3 are theoretically predicted to have trans-bent (C_s) geometries with a nearly constant N_3 bond angle of ~172° and XNN angles which increase from ~103° for FN₃ to ~111° for IN₃. The agreement between the calculated geometries at MP2/6-31G(d,p) and MP2/ LANL1DZ+P and the experimental values for HN₃, FN₃, and ClN₃ is satisfactory. The X-N bond lengths for BrN₃ and IN₃, which have not been measured yet, are predicted as ~1.92 Å for Br-N₃ and ~2.11 Å for I-N₃. A systematic comparison of the experimental vibrational frequencies and the calculated data using scaling factors suggests that in case of BrN₃ and IN₃ some assignments of the experimental spectra are probably incorrect.

The X-N₃ bond strength of the XN₃ molecules is predicted to show the sequence $H \gg F > Cl > Br > I$; i.e., FN₃ has the strongest X-N₃ bond and IN₃ has the weakest. Dissociation of XN₃ into XN + N₂ is predicted as exothermic for FN₃, ClN₃, and BrN₃, but endothermic for IN₃ and HN₃. The high tendency of FN₃ to explode is traced back to the weak FN-N₂ bond. The calculated H-N₃ and HN-N₂ bond dissociation energies and the heat of formation ΔH_f° for HN₃ are in very good agreement with experimental values.

The topological analysis of the electronic wave functions shows that the X-N bond is essentially a single bond with a polarity $X^{\delta-}-N^{\delta+}$ for FN₃ and $X^{\delta+}-N^{\delta-}$ for ClN₃, BrN₃, and IN₃. The covalent bond order index P_{AB} indicates that the N₁-N₂ bond in XN₃ is intermediate between a single and a double bond and that the N₂-N₃ bond has nearly a triple bond. The partial charge is always slightly negative at N₂ and slightly positive at N₃.

Acknowledgment. Stimulating discussions with Prof. K. Dehnicke are gratefully acknowledged. We thank A. Gobbi for his technical assistance with the topological analysis. This work has been financially supported by the Fonds der Chemischen Industrie and the Deutsche Forschungsgemeinschaft. Additional support was provided by the computer companies Convex and Silicon Graphics. Additional computer time was given by the HLRZ Jülich.

Registry No. FN₃, 14986-60-8; ClN₃, 13973-88-1; BrN₃, 13973-87-0; IN₃, 14696-82-3; HN₃, 7782-79-8.